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Sorting Problem



Sorting

Input: Sequence A[1 . . . n].
Output: Permutation A′[1 . . . n] of A[1 . . . n]

in non-decreasing order.



Why Sorting?

Sorting data is an important step of
many efficient algorithms.

Sorted data allows for more efficient
queries.
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Selection sort: example

8 4 2 5 2

Find a minimum by scanning the array
Swap it with the first element
Repeat with the remaining part of the
array
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SelectionSort(A[1 . . . n])

for i from 1 to n:
minIndex ← i

for j from i + 1 to n:
if A[j ] < A[minIndex ]:

minIndex ← j

{A[minIndex ] = minA[i . . . n]}
swap(A[i ],A[minIndex ])
{A[1 . . . i ] is in final position}

Online visualization: selection sort

http://www.sorting-algorithms.com/selection-sort
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Lemma
The running time of
SelectionSort(A[1 . . . n]) is O(n2).

Proof
n iterations of outer loop, at most n
iterations of inner loop.
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Too Pessimistic Estimate?

As i grows, the number of iterations of
the inner loop decreases: j iterates from
i + 1 to n.

A more accurate estimate for the total
number of iterations of the inner loop is
(n − 1) + (n − 2) + · · · + 1.
We will show that this sum is Θ(n2)

implying that our initial estimate is
actually tight.
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Arithmetic Series
Lemma

1 + 2 + · · · + n = n(n+1)
2

Proof

1 2 · · · n

n n − 1 · · · 1
n + 1 n + 1 · · · n + 1 = n(n + 1)
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Alternative proof

+ =n

n n + 1

n



Selection Sort: Summary

Selection sort is an easy to implement
algorithm with running time O(n2).

Sorts in place: requires a constant
amount of extra memory.
There are many other quadratic time
sorting algorithms: e.g., insertion sort,
bubble sort.
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Example: merge sort

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

split the array into two halves

sort the halves recursively

2 3 5 7 1 6 7 13
merge the sorted halves into one array

1 2 3 5 6 7 7 13



MergeSort(A[1 . . . n])

if n = 1:
return A

m← ⌊n/2⌋
B ← MergeSort(A[1 . . .m])

C ← MergeSort(A[m + 1 . . . n])
A′ ← Merge(B ,C )
return A′



Merging Two Sorted Arrays
Merge(B [1 . . . p],C [1 . . . q])
{B and C are sorted}
D ← empty array of size p + q
while B and C are both non-empty:

b ← the first element of B
c ← the first element of C
if b ≤ c:

move b from B to the end of D
else:

move c from C to the end of D
move the rest of B and C to the end of D
return D



Merge sort: example
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2 7 3 5 7 13 1 6

2 3 5 7 1 6 7 13

1 2 3 5 6 7 7 13



Lemma
The running time of MergeSort(A[1 . . . n])
is O(n log n).

Proof

The running time of merging B and C is
O(n).
Hence the running time of
MergeSort(A[1 . . . n]) satisfies a
recurrence T (n) ≤ 2T (n/2) + O(n).
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log2 n

work:

cn

+

2c n
2 = cn

+

4c n
4 = cn

+

...

Total: cn log2 n
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Definition
A comparison based sorting algorithm sorts
objects by comparing pairs of them.

Example

Selection sort and merge sort are comparison
based.
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Lemma
Any comparison based sorting algorithm
performs Ω(n log n) comparisons in the worst
case to sort n objects.

In other words
For any comparison based sorting algorithm,
there exists an array A[1 . . . n] such that the
algorithm performs at least Ω(n log n)
comparisons to sort A.
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Decision Tree

a1 < a2?

a1 < a3?

a2 < a3?
yes

no

a2 < a3?no

a2 ≤ a1 ≤ a3yes

a1 ≤ a2 ≤ a3

yes

a3 ≤ a2 ≤ a1no

a2 ≤ a3 ≤ a1yes

a1 < a3?no
a1 ≤ a3 ≤ a2

yes

a3 ≤ a1 ≤ a2no



Estimating Tree Depth
the number of leaves ℓ in the tree must
be at least n! (the total number of
permutations)

the worst-case running time of the
algorithm (the number of comparisons
made) is at least the depth d

d ≥ log2 ℓ (or, equivalently, 2d ≥ ℓ)
thus, the running time is at least

log2(n!) = Ω(n log n)
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Lemma
log2(n!) = Ω(n log n)

Proof

log2(n!) = log2(1 · 2 · · · · · n)
= log2 1 + log2 2 + · · · + log2 n

≥ log2
n

2
+ · · · + log2 n

≥ n

2
log2

n

2
= Ω(n log n)
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A 2 3 2 1 3 2 2 3 2 2 2 1

1 2 3

Count 2 7 3

1 2 3 4 5 6 7 8 9 10 11 12

A′ 1 1 2 2 2 2 2 2 2 3 3 3



Example: sorting small integers

1 2 3 4 5 6 7 8 9 10 11 12

A 2 3 2 1 3 2 2 3 2 2 2 1

1 2 3

Count 2 7 3

1 2 3 4 5 6 7 8 9 10 11 12

A′ 1 1 2 2 2 2 2 2 2 3 3 3

we have sorted these numbers
without actually comparing them!



Counting Sort: Ideas

Assume that all elements of A[1 . . . n]
are integers from 1 to M .

By a single scan of the array A, count
the number of occurrences of each
1 ≤ k ≤ M in the array A and store it
in Count[k].
Using this information, fill in the sorted
array A′.
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CountSort(A[1 . . . n])
Count[1 . . .M]← [0, . . . , 0]
for i from 1 to n:

Count[A[i ]]← Count[A[i ]] + 1
{k appears Count[k] times in A}
Pos[1 . . .M]← [0, . . . , 0]
Pos[1]← 1
for j from 2 to M:

Pos[j ]← Pos[j − 1] + Count[j − 1]
{k will occupy range [Pos[k]...Pos[k + 1]− 1]}
for i from 1 to n:

A′[Pos[A[i ]]]← A[i ]
Pos[A[i ]]← Pos[A[i ]] + 1



Lemma
Provided that all elements of A[1 . . . n] are
integers from 1 to M , CountSort(A) sorts A
in time O(n +M).

Remark
If M = O(n), then the running time is O(n).
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Summary

Merge sort uses the divide-and-conquer
strategy to sort an n-element array in
time O(n log n).
No comparison based algorithm can do
this (asymptotically) faster.
One can do faster if something is known
about the input array in advance (e.g., it
contains small integers).
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